请安装我们的客户端
更新超快的免费小说APP
添加到主屏幕
请点击,然后点击“添加到主屏幕”
这可以通过临界质量或临界尺寸的控制来实现,从原理上讲,最简单的原子弹采用的是所谓枪式结构,两块均小于临界质量的铀块,相隔一定的距离,不会引起爆炸,当它们合在一起时,就大于临界质量,立刻发生爆炸。
但是若将它们慢慢地合在一起,那么链式反应刚开始不久。
所产生的能量就足以将它们本身吹散,而使链式反应停息,原子弹的爆炸威力和核装药的利用率就很小,这与反应堆超临界事故爆炸时的情况有些相似,因此关键问题是要使它们能够极迅速地合在一起。
这可以将一部分铀放在一端,而将另一部分铀放在“炮筒”内,借助于烈性炸药,极迅速地将它们完全合在一起,造成超临界,产生高效率的爆炸。
为了减少中子损失,核装药的外面有一层中子反射层。
为了延迟核装药的飞散,原子弹具有坚固的外壳。
1945年8月,美国投到日本广岛的那颗原子弹(代号叫“小男孩”)采用的就是枪式结构,弹重约4100公斤,直径约71厘米,长约305厘米。
核装药为铀235,爆炸威力约为14000吨梯恩梯当量,在枪式结构中,每块核装药不能太大,最多只能接近于临界质量,而决不能等于或超过临界质量。
因此当两块核装药合拢时。
总质量最多只能比临界质量多出近一倍。
这就使得原子弹的爆炸威力受到了限制。
另外在枪式结构中,两块核装药虽然高速合拢,但在合拢过程中所经历的时间仍然显得过长,以致于在两块核装药尚未充分合并以前,就由自发裂变所释放的中子引起爆炸。
这种“过早点火”造成低效率爆炸,使核装药的利用率很低,一公斤铀235(或钚239)全部裂变,大约能释放18000吨梯恩梯当量的能量,一颗原子弹的核装药一般为15~25公斤铀235(或6~8公斤钚239)。
以此计算,实际上“小男孩”的核装药利用率还不到百分之五。
铀在正常压力下的密度约为19克/厘米。
在高压下,铀可被压缩到更高的密度。研究表明,对于一定的裂变物质,密度越高,临界质量越小。
根据这一特性,在发展枪式结构的同时,还发展了一种内爆式结构。
在枪式结构中,原子弹是在正常密度下用突然增加裂变物质数量的方法来达到超临界,而内爆式结构原子弹则是利用突然增加压力。
从而增加密度的方法达到超临界。
在内爆式结构中,将高爆速的烈性***成球形装置,将小于临界质量的核装料制成小球,置于炸药中。
通过电雷管同步点火,使炸药各点同时起爆,产生强大的向心聚焦压缩波(又称内爆波),使外围的核装药同时向中心合拢,使其密度大大增加,也就是使其大大超临界。
再利用一个可控的中子源。
等到压缩波效应最大时,才把它
“点燃”。
这样就实现了自持链式反应,导致极猛烈的爆炸。
内爆式结构优于枪式结构的地方,在于压缩波效应所需的时间远较枪式结构合拢的时间短促,因而“过早点火”的几率大为减小。这样,内爆式结构就可以使用自发裂变几率较大的裂变物质,如钚239作核装药。
同时使利用效率大为增。
美国投于日本长崎的那颗原子弹(代号叫“胖子”),采用的就是内爆式结构,以钚239作核装药。弹重约4500公斤,弹最粗处直径约152厘米,弹长约320厘米,爆炸威力估计为20000吨梯恩梯当量。
原子弹的进一步发展就是氢弹,或称为热核武器。
氢弹利用的是某些轻核聚变反应放出的巨大能量。
它的装药可以是氘和氚,也可以是氘化锂6,这些物质称为热核材料。
按单位重量的物质计,核聚变反应放出的能量比裂变反应更多,而且没有所谓临界质量的限制,因而氢弹的爆炸威力更大,一般要比原子弹大几百倍到上千倍。
不过热核反应只有在极高的温度(几千万度)下才能进行,而这样高的温度只有在原子弹爆炸时才能产生,因此氢弹必须用原子弹作为点燃热核材料的
“雷管”。
氢弹爆炸时会放出大量的高能中子,这些高能中子能使铀238发生裂变。因此在一般氢弹外面包一层铀238,就能大大提高爆炸威力。这种核弹的爆炸,经历裂变一聚变—裂变三个过程,所以称为“三相弹”。它的特点是成本低、威力大、放射性污染多。
还有一种新型核弹,即所谓中子弹。
中子弹实际上可能是一种小型氢弹,只不过这种小型氢弹中裂变的成分非常小,而聚变的成分非常大。... -->>
本章未完,点击下一页继续阅读